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Abstract

et SH denote the class of functions f = h + g which are harmonic univalent and sense-preserving in the

unite disk U = {z : |z| < 1} where h(z) = z +
∑∞

k=2 akz
k, g(z) =

∞∑
k=1

bkz
k (|b1| < 1). In this paper we intro-

duce and study the new class of harmonic quasi-convex function. Some properties of this class are proved.
Coefficient conditions, distortion bounds, extreme points, convolution conditions, convex combination for
the class T HQ are obtained .
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1 Introduction and preliminary results

A continuous functions f = u + iv is a complex valued harmonic function in a complex domain C if both
u and v are real harmonic in C. In any simply connected domain D ⊂ C we can write f(z) = h + g, where h
and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)| in D. See Clunie and
Sheil-Small (see [4]).

Denote by SH the class of functions f = h+ g that are harmonic univalent and sense-preserving in the unit
disk U = {z : |z| < 1} for which f(0) = h(0) = fz(0)− 1 = 0. For f = h+ g ∈ SH we may express the analytic
functions h and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k |b1| < 1. (1.1)

Analogous to well-known subclasses of the family S, one can define various subclasses of the family SH. A
sense-preserving harmonic mapping f ∈ SH is in the class HS∗ if the range f(U) is starlike with respect to
the origin. A function f ∈ HS∗ is called a harmonic starlike mapping in U. Likewise a function f defined in
U belongs to the class HC if f ∈ SH and if f(U) is a convex domain. A function f ∈ HC is called harmonic
convex in U. Analytically, we have

f ∈ HS∗ ⇔ Re

{
zh′(z)− zg′(z)
h(z) + g(z)

}
> 0, z ∈ U.

f ∈ HC ⇔ Re

{
zh′′(z) + h′(z)− zg′′(z) + zg′(z)

h′(z)− g′(z)

}
> 0, z ∈ U.

In [1] Noor and Thomas Introduced and studied the class of quasi-convex function Q for f ∈ S.

Definition 1.1 Let f ∈ S. Then f is said to be quasi-convex in U if there exists a convex function g with
g(0) = 0, g′(0) = 1 such that

Re

{
(zf ′(z))′

g′(z)

}
> 0, z ∈ U.
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Now, we define the class of harmonic quasi-convex functions denoted by HQ.

Definition 1.2 Let f = h+ h where h and g given by (1.1). Then f is said to be harmonic quasi-convex in U
if there exists a harmonic convex function F = H +G in U where

H(z) = z +

∞∑
k=2

Akz
k, G(z) =

∞∑
k=1

Bkz
k |B1| < 1. (1.2)

such that

Re

{
zh′′(z) + h′(z)− zg′′(z) + zg′(z)

H ′(z)−G′(z)

}
> 0, z ∈ U. (1.3)

it is clear that when f(z) = F (z), then HC = HQ so that HC ⊂ HQ.

Note that in 1984 Clunie and Sheil-Small [4] investigated the class SH as well as its geometric subclasses and
obtained some coefficient bounds. Since then, there has been several related papers on SH and its subclasses
such that Avci and Zlotkiewicz [6], Silverman [2], Silverman and Silvia [3] , and Jahangiri [5], Ponnusamy and
Kaliraj [7] studied the harmonic univalent functions.

We show first that HQ ⊂ HK, so that every harmonic quasi-convex functions is harmonic close-to-convex
function and hence univalent in U. To prove the following theorem we use the same technique given by [7].

Theorem 1.1 Let f = h+ g ∈ HQ, where h and g given by (1.1) and F be univalent, analytic and starlike in
U. If f satisfies

Re

{
eiθh′(z)

F ′(z)

}
>

∣∣∣∣∣ g′(z)F ′(z)

∣∣∣∣∣, z ∈ U, (1.4)

then f is sen-preserving harmonic and close-to-convex HK and hence univalent in U.

Proof. Let T = h+ εg ∈ HQ where |ε| = 1. By (1.4) it follows that

Re

{
eiθT ′(z)

F ′(z)

}
= Re

{
eiθh′(z)

F ′(z)

}
+ Re

{
εeiθg′(z)

F ′(z)

}
≥ Re

{
eiθh′(z)

F ′(z)

}
−

∣∣∣∣∣ g′(z)F ′(z)

∣∣∣∣∣ > 0, z ∈ U.

Moreover, by (1.5), we see that∣∣∣∣∣ g′(z)F ′(z)

∣∣∣∣∣ < Re

{
eiθh′(z)

F ′(z)

}
≤ Re

∣∣∣∣∣eiθh′(z)F ′(z)

∣∣∣∣∣ =

∣∣∣∣∣ h′(z)F ′(z)

∣∣∣∣∣,
So that (as F ′(z) 6= 0), |g′(z)| < |h′(z)|. Thus from the classical analytic characterization for close-to-convex
function [[4] Theorem 2.17], we obtain that T = h + εg is close -to-convex in U for each ε with |ε| = 1. By
Theorem 1.3, we obtain that f is close-to-convex and hence univalent in U.

We further denote by T HQ the subclass of HQ such that the functions f = h+g where h and g of the form:

h(z) = z −
∞∑
n=2

|an|zn, g(z) =

∞∑
n=1

|bn|zn. (1.5)

and

F (z) = H(z) +Gn(z) = z −
∞∑
k=2

Akz
k +

∞∑
k=1

Bkzk. (1.6)

In the following, we will give the sufficient condition for functions f = h + g where h and g given by (1.1)
to be in the class HQ and it is shown that these coefficient condition is also necessary for functions in the
class T HQ. Also, we obtain distortion theorems and characterize the extreme points for functions in T HQ.
Convolution and closure theorems are also obtained.
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2 Coefficient Bounds

We begin with a sufficient coefficient condition for functions in HQ.

Theorem 2.1 Let f = h+ g where h and g given by (1.1) and F = H +G given by (1.2). If

∞∑
n=1

n2[|an|+ bn|] ≤ 2, (2.1)

where a1 = 1, then f is sense-preserving, harmonic univalent in U, and f ∈ HQ.

Proof. If z1 6= z2, then

∣∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣
∞∑
n=1

bn(zn1 − zn2 )

(z1 − z2) +
∞∑
n=2

an(zn1 − zn2 )

∣∣∣∣∣∣∣∣
> 1−

∞∑
n=1

n|bn|

1−
∞∑
n=2

n|an|
≥ 1−

∞∑
n=1

n2|bn|

1−
∞∑
n=2

n2|an|
≥ 0,

which proves univalence. Note that f is sense-preserving in U. This is because

|h′(z)| ≥ 1−
∞∑
n=2

n|an||z|n−1 > 1−
∞∑
n=2

n2|an| ≥
∞∑
n=1

n2|bn|

>

∞∑
n=1

n2|bn||z|n−1 ≥
∞∑
n=1

n|bn||z|n−1 ≥ |g′(z)|.

From (1.3), let w(z) = (zf ′(z))′

F ′(z) and by using the fact that Rew > 0 if and only if |1 +w| ≥ |1−w|, it suffices

to show that ∣∣∣F ′(z) + (zf ′(z))′
∣∣∣− ∣∣∣F ′(z)− (zf ′(z))′

∣∣∣ ≥ 0. (2.2)

Substituting for f(z) and F (z) given by (1.1) and (1.2), respectively in (2.2) yields, by (2.1) we obtain∣∣∣F ′(z) + (zf ′(z))′
∣∣∣− ∣∣∣F ′(z)− (zf ′(z))′

∣∣∣
=

∣∣∣2 +

∞∑
n=2

[n2an + nAn]zn−1 +

∞∑
n=1

[n2bn − nBn]zn−1
∣∣∣

−
∣∣∣ ∞∑
n=2

[n2an − nAn]zn−1 +

∞∑
n=1

[n2bn + nBn]zn−1
∣∣∣

≥ 2−
∞∑
n=2

[n2|an|+ n|An|]|z|n−1 −
∞∑
n=1

[n2|bn| − n|Bn|]|z|n−1

−
∞∑
n=2

[n2|an| − n|An|]|z|n−1 −
∞∑
n=1

[n2|bn|+ n|Bn|]|z|n−1

≥ 2

{
1−

∞∑
n=2

n2|an||z|n−1 −
∞∑
n=1

n2|bn||z|n−1
}

≥ 2

{
1−

∞∑
n=2

n2|an| −
∞∑
n=1

n2|bn|

}
.

This last expression is non-negative by (2.1), and so the proof is complete.
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The harmonic function

f(z) = z +

∞∑
n=2

1

n2
xnz

n +

∞∑
n=1

1

n2
ynzn (2.3)

where
∑∞
n=2 |xn|+

∑∞
n=1 |yn| = 1, show that the coefficient bound given by (2.1) is sharp. The functions of the

form (2.3) are in HQ because

∞∑
n=1

n2[|an|+ |bb|] = 1 +
∑∞

n=2
|xn|+

∑∞

n=1
|yn| = 2.

In the following theorem, it is shown that the condition (2.1) is also necessary for functions f = h+ g where
h and g are of the form (1.5).

Theorem 2.2 Let f = h+ g be given by (1.5) and F = H +G given by (1.6). Then f ∈ T HQ, if and only if

∞∑
n=1

n2[|an|+ |bn|] ≤ 2. (2.4)

Proof. Since T HQ ⊂ HQ, we only need to prove the ”only if” part of the theorem. To this end, for functions
f and F given by (1.5) and (1.6), respectively , we notice that the condition (1.3) is equivalent to

Re

{
1−

∑∞
n=2 n

2anz
n−1 −

∑∞
n=1 n

2bnzn−1

1−
∑∞
n=2 nAnz

n−1 +
∑∞
n=1Bnz

n−1

}
> 0.

(2.5)

The above required condition (2.5) must hold for all values of z in U. Upon choosing the values of z on the
positive real axis where 0 ≤ z = r < 1, we must have

1−
∑∞
n=2 n

2|an|rn−1 −
∑∞
n=1 n

2|bn|rn−1

1−
∑∞
n=2 n|An|rn−1 +

∑∞
n=1 |Bn|rn−1

> 0.

(2.6)

If the condition (2.4) does not hold, then the numerator in (2.6) is negative for r sufficiently close to 1. Hence
there exist z0 = r0 in (0, 1) for which the quotient in (2.4) is negative. This contradicts the required condition
for f ∈ T HQ and so the proof is complete.

3 Distortion Bounds and Extreme Points.

In this section, first we shall obtain distortion bounds for functions in T HQ.

Theorem 3.1 If f ∈ T HQ. Then for |z| = r < 1 we have

|f(z)| ≤ (1 + |b1|)r +
1

4

(
1− |b1|

)
r2,

and

|f(z)| ≥ (1− |b1|)r −
1

4

(
1− |b1|

)
r2.
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Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be
omitted. Let f ∈ T HQ. Taking the absolute value of f we obtain

|f(z)| =
∣∣∣z +

∞∑
n=2

anz
n +

∞∑
n=1

bnz
n
∣∣∣

≤ (1 + |b1|)r +

∞∑
n=2

(|an|+ |bn|)rn

≤ (1 + |b1|)r + r2
∞∑
n=2

[|an|+ |bn|])

≤ (1 + |b1|)r +
1

4

( ∞∑
n=2

22[|an|+ |bn|]
)
r2

≤ (1 + |b1|)r +
1

4

( ∞∑
n=2

n2[|an|+ |bn|]
)
r2

≤ (1 + |b1|)r +
1

4

(
1− |b1|

)
r2,

for |b1| < 1 show that the bounds given Theorem 3.1 are sharp.

The following covering result follows from the left hand inequality in Theorem 3.1.

Corollary 3.2 If If f ∈ T HQ. Then {
w : |w| < 3

4
(1− |b1|)

}
⊂ f(U).

Next we determine the extreme points of closed convex hulls of T HQ denoted by clco T HQ.

Theorem 3.3 f ∈ clco T HQ if and only if

f(z) =

∞∑
n=1

(Xnhn(z) + Yngn(z)) (3.1)

where h1(z) = z, hn(z) = z − 1
n2 z

n (n = 2, 3, ...), gn(z) = z + 1
n2 z

n (n = 1, 2, 3, ..),
∑∞
n=1 (Xn + Yn) = 1, Xn ≥

0, Yn ≥ 0. In particular, the extreme points of T HQ are {hn} and {gn}.

Proof. For functions f of the form (3.1) we have

f(z) =

∞∑
n=1

(Xnhn(z) + Yngn(z))

=

∞∑
n=1

(Xn + Yn)z −
∞∑
n=2

1

n2
Xnz

n +

∞∑
n=1

1

n2
Ynz

n

Then

∞∑
n=2

n2|an|+
∞∑
n=1

n2|bn| =
∞∑
n=2

Xn +

∞∑
n=1

Yn = 1−X1 ≤ 1,

and so f ∈ clco T HQ.

Conversely, suppose that f ∈ clco T HQ. Setting

Xn = n2|an| 0 ≤ Xn ≤ 1 (n = 2, 3, ...),

Yn = n2|bn| 0 ≤ Yn ≤ 1 (n = 1, 2, 3, ...),
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and X1 = 1−
∞∑
n=2

Xn −
∞∑
n=1

Yn. Therefore, f can be written as

f(z) = z −
∞∑
n=2

|an|zn +

∞∑
n=1

|bn|zn

= z −
∞∑
n=2

Xn

n2
zn +

∞∑
n=1

Yn
n2
zn

= z +

∞∑
n=2

(hn(z)− z)Xn +

∞∑
n=1

(gn(z)− z)Yn

=

∞∑
n=2

hn(z)Xn +

∞∑
n=1

gn(z)Yn + z

(
1−

∞∑
n=2

Xn −
∞∑
n=1

Yn

)

=

∞∑
n=1

(hn(z)Xn + gn(z)Yn), as required.

4 Convolution and Convex Combination.

In this section, we show that the class T HQ is invariant under convolution and convex combination of its
member.

For harmonic functions f(z) = z −
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n and Ω(z) = z −

∞∑
n=2

ψnz
n +

∞∑
n=1

φnz
n the convolution of

f and F is given by

(f ∗ Ω)(z) = f(z) ∗ Ω(z) = z −
∞∑
n=2

anψnz
n +

∞∑
n=1

bnφnz
n. (4.1)

Theorem 4.1 Let f ∈ T HQ and Ω ∈ T HQ. Then f ∗ Ω ∈ T HQ.

Proof. Then the convolution f ∗ Ω is given by (4.1). We wish to show that the coefficients of f ∗ Ω satisfy
the required condition given in Theorem 2.2. For Ω ∈ T HQ we note that |ψn| ≤ 1 and |φn| ≤ 1. Now, for the
convolution function f ∗ Ω, we obtain

∞∑
n=2

n2|an||ψn|+
∞∑
k=1

n2|bn||φn|

≤
∞∑
n=2

n2|an|+
∞∑
k=1

n2|bn| ≤ 1.

Therefore f ∗ Ω ∈ T HQ.

We now examine the convex combination of T HQ.
Let the functions fj(z) be defined , for j = 1, 2, ... by

fj(z) = z −
∞∑
n=2

|an,j |zn +

∞∑
n=1

|bn,j |zn. (4.2)

Theorem 4.2 Let the functions fj(z) defined by (4.2) be in the class T HQ for every j = 1, 2, ...,m. Then the
functions tj(z) defined by

tj(z) =

m∑
j=1

cjfj(z), (0 ≤ cj ≤ 1) (4.3)

is also in the class T HQ where
m∑
j=1

cj = 1.
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Proof. According to the definition of tj , we can write

tj(z) = z −
∞∑
n=2

 m∑
j=1

cjan,j

 zn +

∞∑
n=1

 m∑
j=1

cjbn,j

 zk (4.4)

Further , since fj(z) are in T HQ for every (j = 1, 2, ...). Then by (2.4) we have

∞∑
n=1

{
n2
( m∑
j=1

cj [|ak,j ||bk,j |]
)}

=

m∑
j=1

cj

( ∞∑
n=1

n2[|an,j |+ |bn,j |]

)

≤
m∑
j=1

cj2 ≤ 2.

Hence the theorem follows .

Corollary 4.3 The class T HQ is close under convex linear combination.

Proof. Let the functions fj(z) (j = 1, 2) defined by (4.1) be in the class T HQ. Then the function Ψ(z) defined
by

Ψ(z) = µf1(z) + (1− µ)f2(z) (0 ≤ µ ≤ 1)

is in the class T HQ. Also, by taking m = 2, t1 = µ and t2 = (1− µ) in Theorem 4.1, we have the corollary.
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